

Belled End Tees

- Belled end fittings offer an alternative welding method which allows quick alignment of the welding surfaces.

- The fittings are made from ASTM A 312 stainless steel welded pipe.
 Alloys stocked include Types 304L and 316L.
 Sizes stocked are to 2" nominal pipe size with larger sizes available upon request.
- Wall thickness stocked is Schedule 10s with Schedule 5s available upon request.
- Reducing tees available upon request.

Straight Tee

Nominal	Inside	Wall				
Pipe Size	Diameter	Thickness	С	D	Weight	
1/2	.840	.083	2 1/4	5/8	.29	
3/4	1.05	.083	2 1/2	5/8	.40	
1	1.31	.109	2 3/4	5/8	.63	
1 1/4	1.66	.109	3	3/4	.77	
1 1/2	1.90	.109	3 1/4	⁷ / ₈	.99	
2	2 3/2	.109	3 7/	15/1/	1.72	

All weights are in pounds based on a metal density of .29 lb/in.³

Reducing Tee

Nominal Pipe Size		Inside Diame	ter		С	D	Weight
	X 1/2	1.05	X 1.05	X .840	2 1/2	5/ ₈	.40
1 X 1	X 1/2	1.31	X 1.31	X .840	2 3/4	⁵ / ₈	.63
1 X 1	X $^{3}/_{4}$	1.31	X 1.31	X 1.05	$2^{-3}I_{4}$	⁵ / ₈	.63
1 ¹ / ₄ X 1 ¹ / ₄	X 1/2	1.66	X 1.66	X .840	3	3/4	.77
1 1/ ₄ X 1 1/ ₄	X 3/4	1.66	X 1.66	X 1.05	3	3/4	.77
1 1/ ₄ X 1 1/ ₄	X 1	1.66	X 1.66	X 1.31	3	3/4	.77
1 ¹ / ₂ X 1 ¹ / ₂	X 1/2	1.90	X 1.90	X .840	3 1/4	⁷ / ₈	.99
1 ¹ / ₂ X 1 ¹ / ₂	X 3/4	1.90	X 1.90	X 1.05	3 1/4	⁷ / ₈	.99
1 1/ ₂ X 1 1/ ₂	X 1	1.90	X 1.90	X 1.31	3 1/4	⁷ / ₈	.99
1 ¹ / ₂ X 1 ¹ / ₂	X 1 1/ ₄	1.90	X 1.90	X 1.66	3 1/4	⁷ / ₈	.99
2 X 2	X 1/2	2 3/8	X 2 3/8	X .840	3 ⁷ / ₈	¹⁵ / ₁₆	1.72
2 X 2	X 3/4	2 3/8	X 2 3/ ₈	X 1.05	3 ⁷ / ₈	¹⁵ / ₁₆	1.72
2 X 2	X 1	2 ³ / ₈	X 2 3/ ₈	X 1.31	3 ⁷ / ₈	¹⁵ / ₁₆	1.72
2 X 2	X 1 1/ ₄	2 3/8	X 2 3/8	X 1.66	3 ⁷ / ₈	¹⁵ / ₁₆	1.72
2 X 2	X 1 ¹ / ₂	2 3/8	X 2 ³ / ₈	X 1.90	3 ⁷ / ₈	¹⁵ / ₁₆	1.72